PRODUCT DESCRIPTION ### optibelt BLUE POWER HIGH PERFORMANCE WEDGE BELTS #### **Structure/Properties** optibelt BLUE POWER wedge belts: The aramid tension cord has extremely low stretch compared to common materials such as polyester. The breaking strength is almost twice as high with the same cord diameter. Nevertheless, the fibre is extremely flexible. The high quality specially prepared aramid tension cord is embedded in a rubber compound. It is supported by the top and bottom structures. These consist of a polychloroprene rubber compound with tranverse fibres. The abrasion-proof cover fabric is coated with a special rubber compound and covers the whole belt. The V-belt is electrically conductive according to ISO 1813 #### **Application areas** optibelt BLUE POWER belts are mainly used when - highest power transmission levels are required - there are limited design dimensions - there is only little installation and tensioning space - high temperature influences occur This way, a much better performance is guaranteed e.g. with the same number of belts. Even the operation of once critical drives is now largely free of risk. Higher load limits are now safety zones. Thus optibelt BLUE POWER belts are mainly implemented in heavily loaded drives: - in critical drives in mechanical engineering - in special machines - in agricultural machinery ### **Application** Attention: When retro-fitting existing drives please let Optibelt check the tension. As part of this description not all criteria can be dealt with. Please consult our Application Engineering Department. #### Standardisation/Dimensions optibelt BLUE POWER wedge belts in the profiles SPZ, SPA, SPB, SPC, 3V/9N, 5V/15N and 8V/25N are standardised according to DIN 7753 Part 1, ISO 4184 and ARPM/MPTA. Table 3 | Profile | | | SPB | SPC | | |---|--------------------|-----|-------|-------|--| | Belt top width | b _o | æ | 16.3 | 22 | | | Datum width | b_d | æ | 14 | 19 | | | Belt height | h | æ | 13 | 18 | | | Distance | h_{d} | æ | 3.5 | 4.8 | | | Recommended minimum datum pulley diameter | $d_{d\ mi}$ | n | 180 | 280 | | | Weight per meter (kg/m) | | æ | 0.206 | 0.389 | | | Flex rate (s ⁻¹) | f _{B max} | x ≈ | 100 | | | | Belt speed (m/s) | v _{max} | ≈ | 50* | | | ^{*}v > 50 m/s. Please consult our Application Engineering Department. Table 4 | Profile | | | 5V/15N | 8V/25N | | |---|--------------------|-----|--------|--------|--| | Datum width | b _o | æ | 15 | 25 | | | Be l t height | h | æ | 13 | 23 | | | Recommended minimum outside pulley diameter | d _{a mi} | n | 191 | 315 | | | Weight per meter (kg/m) | | * | 0.204 | 0.603 | | | Flex rate (s ⁻¹) | f _{B max} | × ≈ | 100 | | | | Belt speed (m/s) | v _{max} | æ | 50* | | | ^{*}v > 50 m/s. Please consult our Application Engineering Department. # **STANDARD RANGE** # optibelt BLUE POWER HIGH PERFORMANCE WEDGE BELTS ## DIN 7753 Part 1/ISO 4184/BS 3790 ## ARPM/MPTA | BII 1 / 3 G T GIT T / | | | | | | |--|--|--|--|--|--| | Profile SPB | | Profil | e SPC | Profile 8V/25N | | | Datum length ISO
L _d [mm] | | Datum le
L _d (r | | Belt des
Profile,
length code | ignation
Profile,
outside length,
L _a [mm] | | 1500
1600
1700
1800
1900
2000
2120
2240
2360
2500
2650
2800
3000
3150
3350
3750
4000
4250
4500 | 4750
5000
5300
5600
6000
6300
6700
7100
7500
8000 | 2000
2120
2240
2360
2500
2650
2800
3000
3150
3350
3750
4000
4250
4500
4750
5000
5300
5600
6000 | 6300
6700
7100
7500
8000
8500
9000 | 8V 1600
8V 1700
8V 1800
8V 1900
8V 2000
8V 2120
8V 2240
8V 2360
8V 2500
8V 2650
8V 2800
8V 3000
8V 3150
8V 3550 | 25N 4064
25N 4318
25N 4572
25N 4826
25N 5080
25N 5385
25N 5690
25N 6350
25N 6731
25N 7112
25N 7620
25N 8001
25N 8509
25N 9017 | | Maximum production length: 18 000 mm Minimum order quantity: 1500 mm − 1800 mm = 25 pieces Over 1800 mm = 23 pieces Weight: ≈ 0.206 kg/m | | Maximum production I
Minimum order quantit
from 2000 mm =
16 pieces
Weight: ≈ 0.389 kg/n | ty: | Maximum production length: 18000 mm L_a Minimum order quantity: from 4064 mm L_a = 14 pieces Weight: ≈ 0.603 kg/m | |